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The investigation gives a comparison of the best-known kinetic evaluation methods 
for DTA curves. With regard to accuracy and error-compensation, the methods of 
Borchardt and Daniels, Coats and Redfern and Satava and ~kvara in particular are to 
be recommended if simple irreversible reactions are to be evaluated on the basis of 
homogeneous kinetics. The complete exponential integral method is described which 
totally eliminates the approximative character of the practical procedure of Coats and 
Redfern. Hence, it becomes theoretically exact again. 

In an estimation o f  the accuracies and sensitivities o f  well-known methods o f  
evaluating differential thermal analysis (DTA)  or differential thermogravimetr ic  
(DTG)  curves, it is necessary to compare  these procedures using defined curve 
shapes. It is obvious to apply synthesized model  curves, as will be demonstrated 
very precisely under defined premises by means o f  a computer .  Other  subjects o f  
comparison,  such as selected experimental D T A  or D T G  and E G A  curves, re- 
spectively, are influenced by unknown error sources a priori. Such effects lead to 
inadmissible generalizations, as in the testing o f  some evaluation procedures by 
Chen [1 ]. 

The present investigation starts f r o m  a homogeneous  irreversible first-order 
model  reaction, produced using the comput ing  p rogram D T A - t  for the following 
parameters,  including the Arrhenius equat ion:  

H R = 40 kcal mole -1 q = 3.75 deg min -1 
E = 20 kcal mole -1 V -- 0.005 1 
k0 = 10 I2 rain -1 C o = 5.714 cal deg -~ 
c = 0.1 mole 1-1 K = 4.0 cal deg -1 rain -1 

09  

dx ~ [  eAT ] f 
dt - Cp d ~  + KAT ' with A =  ATdt  

o 

(l) 

= k o exp(-E/RT)(c  - x) n (2) 

Figure 1 shows the theoretical D T A  curve, as well as one with incidental errors;  
an other  curve with larger errors will be presented later. The mean error in AT 
amounts  to 8 and 14 percent, respectively. The theoretical curve was calculated 
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down to 0.1 percent of ATm,,, but values down to 10 percent of  ATma x were gener- 
al/b, involved in the comparisons. 

For the comparisons eight well-known methods were employed. The method of  
Kissinger [2] was included, although it needed more than two DTA curves at 
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Fig. 1. Theoretical DTA curve (curve 1, o) and DTA curve with incidental errors (curve 2, A). 
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Fig. 2. Plot according to the method of Kissinger. 

different heating rates q, which makes unclear the consideration of error-affected 
curves. Figure 2 illustrates six exact mode/curves with variation of  q from 0.5 to 
10 degree rain -1. Relative large deviations from the linearity of Eq. (3) are visible 
even in the region of low temperatures of the DTA maximum, Tm: 

d log q/T~m E _ (3) 
d(1/Tm) 2.3 R 

Putting the temperature of the maximum of  the reaction rate Trm equal to the 
temperature of  the DTA maximum, T~, is still not allowed for q = 0.5 deg rain-l,  
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the activation energy remaining too small by 6.2 percent. A further simplification 
was applied to the exponential integral. 

In the evaluation of Piloyan et al. [3] the first part of the DTA curve was ex- 
ploited. The premise for the validity of Eq. (4) is a high heating rate, by which the 
exponential function related to Eq. (2) becomes important, if AT is proportional 
to the reaction rate dx/dt: 

In 4T = --E/RT + const. (4) 

As shown in Fig. 3, this method is still not sufficiently usable for q = 3.75 deg 
min -1. It does not described the theoretical curve as a linear function. Moreover, 
experimentally the inaccuracies of the initial slope are larger than near the DTA 
maximum. 
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Fig. 3. Plot according to the method of  Piloyan et al. 

Borchardt and Daniels [4] belong to the pioneers of quantitative DTA. They 
developed a differential procedure for the establishment of the instantaneous 
reaction rate, dx/dt, with a function of the type of  Eq. (1). After integration, the 

rate constant k dx/dt - was formed. If  the choice of the reaction order n is 
(c - x ) -  

correct, then, after Arrhenius, a straight line appears, from which the reaction 
parameters E and k 0 can be obtained: 

dx/dt 
log (c - x) y = logk  = -E/2.3 RT + log k 0 (5) 

The theoretical DTA curve in Fig. 4 gives a straight line. The errors in curves 2 
and 3 are clear in this diagram, but the linear connexion is still not disturbed 
strongly. A distinction between first and second orders throughout is possible near 
the maximum, Tin. 

Freeman and Carroll [5] developed a difference procedure which has some obvi- 
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ous advantages and disadvantages. The advantage consists in not proving the 
reaction order n, if, as in Fig. 5, the mathematical exact form of  Eq. (6) is plotted: 

3 log(dx/dt) E A(1/T) 
- + n (6) 

A l o g ( c -  x) 2.3 R A log (c - x) 

2t.<_ 
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Fig. 4. Plot according to the method of Borchardt and Daniels. �9 : from DTA curve with larger 
errors. 
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F i g .  5. P l o t  a c c o r d i n g  t o  t h e  m e t h o d  o f  F r e e m a n  a n d  C a r r o l l .  

However relatively small deviations from the model course result in large devi- 
ations, in contrast to the theoretical straight line. Therefore, this procedure calls 
for high requirements as regards the measuring accuracy, because the ratio of  
differences of  small amounts is to be formed. A further disadvantage is the fact 
that it is impossible to coordinate the points of  the DTA curve to those of  Fig. 5, 
because it is unknown whether the differences are formed from neighbouring or 
distant points. Therefore, a curve discussion is difficult. The Figure demonstrates 
that the evaluation of a strongly error-affected curve is not meaningful. A feature 
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of the described plot is the clustering of the calculated points along the abscissa 
in the region of small values. Using equal temperature step-widths, this region 
corresponds to higher temperatures. 

In the integrative method of Coats and Redfern [6] an approximation is applied, 
which results from the treatment of the exponential integral. An asymptotic series 
evolution for the exponential integral in Eq. (7) is cut off with the second term as 
shown in  Eq. (8): 

dx k o 
(c 2 x). - g(x) = k o exp ( - E / R T ) d t  = - -q  exp ( - E / R T ) d T  (7) 

0 0 o 

g ( x )  E l k~  2RT I (8) 
- 2 .3Rr  + ~ l - - - E - -  

x v 
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Fig. 6. Plot according to the method of Coats and Redfern. 

The remaining temperature-dependence of this expression is neglected. Figure 
6 shows that the graph log g(x)/T 2 vs. 1/T depends strongly on the reaction order 
near the DTA maximum arid at high temperatures, but only slightly in the ascend- 
ing DTA branch. The erroneous curves are still appropriate for an evaluation, 
although for the activation energy and the parameter k 0 distinct deviations are to 
be expected. 

The method of ~atava and gkvara [7] consists in a comparison of the log g(x) 
vs. 1/T curve with a family of calculated log p(z) vs. 1/T curves with E as a family 
parameter. The activation energy (z = E/RT) follows from the congruence of two 
curves. By parallel shifting, one finds the parameter k 0, because 

koE 
log g(x) - log p(z) = log q--~- = const. (9) 
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As visible from Fig. 7, the influence of  1/T 2 is hardly noticeable in the model curve, 
although a soft flexure of the straight line does occur. This is also caused by a cor- 
rection of the log g(x)/T 2 function described below for the procedure of Coats 
and Redfern, which operates in the same direction. 
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Fig. 7. Plot according to the method of gatava and Skvara. 
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Fig. 8. Plot according to the method of Horowitz and Metzger. 

After Horowitz and Metzger [8], in the region of the maximum of  the DTA curve 
relation Eq. (10) is approximately valid, ifTrm is the temperature o f  the maximum 
of  the reaction rate: 

E 
l o g g ( x ) -  2.3 RT~m O; where 0 = T-Trm ( 1 0 )  
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In practice one puts T~m = Tin. Figure 8 indicates, that the theoretical DTA curve 
is not a straight line. Because the approximation is obviously linear, near the DTA 
maximum, a decision as to the reaction order may be very difficult. 

An interesting method was proposed by Gyulai and Greenhow [9]. This has the 
advantage of including the exponential integral totally by numerical integration. 
One needs at least two DTA curves for different heating rates, and then a tempera- 
ture pair T~ and T~• must be combined according to the same reaction turnover x. 
It then follows from Eq. (7) that 

T t x  

gCx)l q~ I~1 f -g(x)2 q~ I21 - 1 ; Iz~ = o exp (-E/RT) dT (11) 
0 

log q l  = log [21 
q2 I21 (12) 

E, k ca l /mote 

t- q+-P" ~ 3 2  
q 2-05 ~ 3 ~  "~" " ~  A 

-1.0 

Fig. 9. Plot according to the method of Gyulai and Greenhow 

For the temperature pairs Tlx and T2x the corresponding integrals were taken 
from tables, and log I1/I 2 drawn as a function of the activation energy. The rela- 
tions constructed are linear. Because of the equality Eq. (12), in Fig. 9 the logarithm 
ql/q2 is introduced. At the point of intersection Eqs. (11) and (12) are fulfilled. The 
Figure contains a representation of experiments 1 and 2, and 2 and 5, respectively. 
Despite the mathematical exactness of  this procedure, it must be pointe d out that 
it is very sensitive to experimental errors. Thus, an uncertainty of about • 0.4 de- 
gree in Tx means a fluctuation of about 10 percent in the activation energy. 

The method developed by Sz6kely and Lengyel [10] is an interesting one. In 
comparison to the procedures described hitherto, it needs both the first and the 
second derivatives of the turnover with respect to time. Because of  these high de- 
mands as to the precision of the experiments, in this case the evaluation of error- 
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Table I 

Comparison of activation energies with a theoretical value 
E -  20 kcal mole -1 

Kissinger 
Piloyan et al. 
Borchardt-- Daniels 
Freeman-- Carroll 
Coats-- Redfern 
~kvara-- ~atava 
Horowitz-- Metzger 
Gyulai -- Greenhow 
Sz6kely- Lengyel 

D T A  curve 1 D T A  curve 2 D T A  curve 3 
(%) (%) (%) 

18.76 (6.2) 
18.74 (6.3) 
20.OO (0) 
19.86 (0.7) 
20.00 (0) 
20.00 (0) 
22.03 (10.2) 
20.00 (0) 
20.O0 (0) 

19.96 (0.2) 
15.60 (22.0) 
18.49 (7.5) 
19.30 (3.5) 
18.29 (8.5) 
19.21 (4.0) 

21.15 (5.7) 
59.68 (198.4) 
19.18 (4.1) 
19.50 (2.5) 
20.24 (1.2) 
17.93 (10.4) 

affected curves was without chance of  success. On the other hand, the results for 
the theoretical model curve are in complete agreement with expectations. The plot 
in the proposed diagram produces a linear correlation. 

Table 1 lists activation energies obtained by the different evaluation procedures. 
It is clear that the methods of  Borchardt and Daniels, Coats and Redfern and ~atava 
and Skvara give the best results, even under extreme conditions. Furthermore,  
these procedures show relatively good linearization and error compensation. The 
premises and demands of  the other methods prove poorer in practice. This conclu- 
sion agrees with that of  Zsak6 [11] in part, but is in contrast to that of  Chen [1 ], 
who supported the method of  Freeman and Carroll. However, his example diag- 
ram is distinctly non-linear and pointed to deficiencies in the experimental data 
as a basis of comparison. Indeed, the Freeman and Carroll method is a sensitive 
indicator for deviations from the theoretically exact DTA curve, especially in the 
region of  small reaction turnovers. 

The method of complete exponential integrals 

It was seen above that the method of  Coats and Redfern is very practicable, 
although it uses a simplified equation of  evaluation; this has often been improved 
by different corrections [12]. Our earlier investigations [13] succeeded in eliminat- 
ing the approximation character of  this method totally, whereby this procedure 
becomes theoretically equal with that of  Borchardt and Daniels. By integration 
of  the reaction rate expression of  Eq. (2) up to time t, one obtains Eq. (7). After 
partial integration: 

z fe ] g(x) = q R  + du ; where (13) 
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For large values of  z, an asymptotic series is often used instead of the exponential 
integral. Cutting off this series yields the expression in Eq. (8). Compared with this, 
the exact formula is given in Eq. (14): 

g(x) E koR 
log T2 2.3 RT + log [(z)] + log qE- (14) 

Therefore, the exponential integral was calculated numerically by computer. 
In fact, a straight line is not to be expected if log g(x)/T 2 is plotted against T -1, 
if the complete exponential integral is involved. Figure 10 shows such a total curve. 

i I g [ ( z ) ]  
, .  fur E=3 kca[/mote -01 

-1 § ~ -  - - /  (1) 
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Fig. 10. Plot according to the method of  Anderson  et al. 

Therefore, the tangent at one point gives only an apparent activation energy. 
From the slope we obtain the real activation energy by differentiation of  Eq. (14) 
with respect to T-!  (see Eq. (15). The reaction parameter k 0 is now found from Eq. 
(14) by introduction of  E(real): 

g(x) 
d log T2 d log[(z)] E(real) 

- - ( 1 5 )  
d0/T)  d0 /T)  2.3 R 

Both required correction values, log[(z)] and its derivative with respect to T -1, 
are collected in a table (see [13]) as a function of  z. This finishes the discussion of  
the approximative character of  Eq. (8). The exponential integral is now completely 
available by means of  the exact correction. Hence, the qualitative evaluation o f  
DTA curves of  simple reactions is possible without approximation. The error in 
percentage for E is smaller than for k0. It amounts for z -- 10 to about AE2.2 
per cent and Ako 30 per cent. For our model curve with z = 28.8 AE is smaller than 
0.1 percent and Ak o about 7 per cent. In Table 1 these facts are not considered~ 
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R~SUM~ -- L'dtude porte sur la comparison des m6thodes les plus connues d'exploitation 
cindtique des courbes ATD. Du point de vue de l 'exactitude et de la compensation des erreurs, 
on 6tablit que les m6thodes de Borchardt  et Daniels, de Coats et Redfern ainsi que de Satava 
et Skvara peuvent ~tre recommand6es pour l '6tude des r~actions irr6versibles simples en cin6- 
tique homog~ne. Dans la seconde partie, on d6crit la m~thode d'int6gration exponentielle 
complete qui supprlme totalement le caractSre approximatif  de la m6thode de Coats et Redfern. 

ZUSAMMENFASSUNG - -  Die Untersuchung beschfifligt sich mit dem Vergleich der bekanntesten 
kinetischen Auswerteverfahren for DTA-Kurven.  Unter  Beachtung der Genauigkeit  und des 
Fehlerausgleiches wird festgestellt, dab die Methoden von Ilorchardt  und Daniels, Coats und 
Redfern sowie ~atava und gkvara besonders empfehlenswert sind, wenn man einfache irrever- 
sible Reakt ionen auf  der Grundlage der Homogenkinet ik auswerten will. -- Im zweiten Teil 
wird die Methode des vollstfindigen Exponentialintegrals beschrieben, die den Nfiherungs- 
charakter in dem praktikablen Verfahren von Coats und Redfern aufhebt. Dadurch  wird es 
wieder theoretisch exakt. 

Pe3B3Me - -  I l p o B e ~ e H o  cpaBHeHHe CaMbIX I~3BeCTHblX KarteTtl~tecKHx MeTO~IOB BbI~e~eH~a ~J~n 
I~pHBbIX )~TA. Y~ITbIBa~t TOqJ-IOCTt, I,I ~oMnenca~HoHuy~o  omrt6Ky, 6Hno yCTaHOBYletto, ~ITO Me- 

TO~,I  B o p x a p a x a - - ) ~ a u r t 3 m ~ c a ,  K O y T c a - - P e ~ q b e p H a ,  a T a ~ e  MeTO~ IIIaTaBbI--I I IKBapbI  0 r  
peKOMeH)IyeMb[, eCJIIr HpOCTl~te H e o 6 p a T a M L m  p e a K u ~  MOFyT 6~,IT~ BLI~eJIeHbI Ha OCHOBalfP!Ir 

r o M o r e ~ o ~  KHHeTNKt, I. B o  BTOpOfI '-laCTIC MeToJIa Ofi~.fCaH HOYiHMX~ 3KCrlOlleI-rdl~an~Ioibi~ t/ItTe- 
rpan,  t(OTOpbll~ nOJ~HOCTBm p a 3 p e m a e T  IIpII6.rlllzKeBltl,ll~ x a p a x T e p  ripaKTt'iKecKx/i i icI lor lb3yeMofl  

MeTOJII, IKII K o y l c a - - P e j l q b e p H a .  I-[p~ 3TOM MeTO~ CTaHOBtITClt CHOBa Teope/N'fec~I~ TO~IHMM. 

J. Thermal Anal. 12, 1977 


